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Abstract--To take the effect of shellside flow maldistributions into account, the dispersion model is used 
for predicting the transient behaviour subject to arbitrary inlet temperature changes in multipass shell and 
tube heat exchangers. The number and size of tubeside passes are arbitrary and two possible flow arrange- 
ments are considered. Besides the thermal capacities of both fluids and the core wall, the thermal capacity 
of the shell wall is included in the model. The final solution is obtained by means of the numerical inverse 
Laplace transform. The influence of the shellside flow maldistribution and the thermal capacity of the shell 

wall are discussed. 

INTRODUCTION 

MORE AND more research papers have contributed to 

the analysis of the transient behaviour of shell and 
tube heat exchangers, since the knowledge of dynamic 
characteristics of such equipment is elementary infor- 
mation for the design of control systems to achieve the 
optimum design and operation. Correa and Marchetti 

[l] applied the concept of cell structure to describing 
the dynamic behaviour of multipass shell and tube 
heat exchangers subject to a step inlet temperature 
change, in which the influence of the thermal capacity 
of the core wall was considered by introducing an 
equivalent tubeside specific heat capacity. By means 
of a numerical inverse Laplace transform, the authors 
of this paper developed a method [2] for predicting 
the transient responses to arbitrary inlet temperature 
changes of multipass shell and tube heat exchangers 
with an arbitrary number of tubeside passes and finite 
thermal capacities of both the fluids and the core wall. 

However, all these papers are based upon the ideal 
plug-flow model. This conventional model may fail 
if strong shellside flow maldistributions occur which 
degrade the performance of equipment. 

In fact, the shellside flow is never uniform because 
of the complicated geometrical structures such as 
baffles and windows. Mueller [3] classified the various 
kinds of possible flow maldistributions in heat 
exchangers. The effect of these maldistributions on 
the thermal performance of the exchanger depends on 
the intensity of each maldistribution. The dispersion 
model is a very effective instrument to estimate the 
effect of flow maldistributions on the performance 
under the stationary condition [4, 51. 

The dispersion model is an improved plug-flow 
model, i.e. it is based on the main plug-flow with axial 
diffusion or dispersion which may be both molecular 

and macroscopic (laminar or turbulent). The syn- 

onym of axial dispersion is back-mixing. In this model, 
the apparent axial heat conduction term is introduced 
into the energy balance and the effect of flow mal- 
distribution is taken into account by this dispersion 

term in the energy equation. It is convenient and 
accessible to use this one-dimensional model with only 
the axial space variable to handle such problems con- 

cerning complicated flow patterns. Taylor [6] may be 
the first to develop the dispersion model for mass 
transfer in turbulent flow through a pipe. 

In this paper, the application of the dispersion 

model is extended to the transient analysis of multi- 
pass shell and tube heat exchangers. In the light of 

this model, the expressions for the transient responses 
to arbitrary inlet temperature changes in exchangers 
with N tubeside passes (designated as 1 -N) are 
derived. The thermal capacities of both fluids, the 
core wall and the shell as well as two possible flow 
arrangements are included. The fact that the thermal 
properties and the number of transfer units (NTU) 

vary piecewise from pass to pass is allowed for. The 
final solutions are obtained by means of the numerical 
inverse Laplace transform. According to the derived 
expressions, the effect of the shellside flow mal- 
distribution on the transient behaviour of such appar- 
atus is analysed. 

DERIVATION OF THE GOVERNING EQUATIONS 

The previous analysis [7] has shown that the effect 
of longitudinal heat conduction in the wall is generally 
negligible, so that such longitudinal heat conduction 
will be neglected in the following derivations. The 
other necessary assumptions are listed as follows : 

(1) the thermal flow rates ci/, and I@2 of both fluids 
are constant ; 
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L 

A heat transfer surfdcc area ]m ‘1 

C’ heat capacity [J K ‘] 
n dispersion coefficient or apparent heat 

conductivity [W m ’ K “J 
.f’, t--j. .f&) inict lemperature changes 
F,(s). F,(s) tr~~nsformed forms of f’,(z) and 

f(z) in the image domain 
steady parts defined in equation (30) 
heat transfer coefficient [W m ’ K ‘1 
distance from the entrance of shellside 

fluid [m] 

length of the heat exchanger ]m] 
number of the summed series terms in 

equation (37) 

number of tubesidc passes 
number of transfer units, dimensionless 
Peclet number defined in equation (6) 
parameter of the Laplacc transform 
dilnensionless temperature. 
I = ((I-o,,)l((I,-it,,) 
transformed form oft in the Laplace 
transform domain 
thermal flow rate [W K ‘] 
dimensionless coordinate, .Y = i/t, 
din~ensionless time. 

Greek symbols 
0 temperature [K] 

(I,, initial temperature in heat exchangers [K] 

0, reference temperature [K] 

/* cigenvaluc 

T time [s] 

r, residence time of fluid in the heat 
exchanger [s] 

4,(.x, z) transient parts defined in equation 
(31). 

Subscripts 
I shellside fluid 

2 tubeside fluid 
e exit 
n new inlet temperature change 

q cross-section . . 
S shell wall 
W core wall. 

Superscripts 
inlet 

II exit. 

(2) the wall heat transfer resistance is negligible, 
compared with the convective heat transfer resistances 
on both sides ; 

(3) the effect of shellside flow maldistribution can 
be described by introducing a dispersion term in the 
shellside energy equation ; and 

(4) no heat is transferred from the shell of the 
exchanger to the environment. 

The shell and tube heat exchangers with N tubeside 

passes and two different tubeside flow arrangements 
are illustrated in Fig. 1. The origin of the coordinate 
system is always set at the location where the shellside 
fluid enters the apparatus. According to the above- 
mentioned presumptions, one is able to derive the 
following differential equations : 

c+ -!h‘@,,(t, -t~~,)-(hA)2i(t2,-t~*) =o 

(i = I, 2,. , N) (3) 

c, f/i = (h&(t, -t,) (4) 

where the positive sign (+) and negative sign ( -) 
of (-&) in equation (2) are valid for tubeside flow 
arrangements I and II which are shown in Fig. 1, 
respectively. 

According to the first assumption, the thermal flow 

rate @2 does not change from pass to pass. But the 
thermal capacity C,, of the tubeside fluid may be 
different from pass to pass. The residence times z,, 
and ~~~ of both fluids and some dimensionless par- 
ameters are introduced 
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FE. I. Schematic representation of multipass shell and tube heat exchangers 

where 

,= I I= I 

c* = ; C*r and C’,= tCWi. 
I= I i= I 

Obviously, there are the following relationships : 

1 and zrzi = .aCirrZ. (5) 

The other dimensionless parameters are defined as 

Uli R, c>, E,~=- 
w l+R,,’ 

US, 
cl - 

*’ - R,(l +R,,)’ 
sign = *(-- l)j. 

Introducing the dimensionless time variable z = T/ 
z,, , one can rewrite equations (l)-(4) as follows : 

- US(t, - t,) = 0 (6) 

sign~+e,.R,~+L.,,(t,,-t,,) = 0 (7) 

R_,% -a,i(t,-tt,,)--2r(t~l-t,y,) = 0 (8) 

R,R,(I+R,,+&-f,)=O (9) 

where the P&let number Pe = &,L/DA,. Pe appears 
only in the differential equation for describing the 
shellside temperature. If Pe + (r‘, equation (6) 
approaches to the same as that [2] derived from the 
conventional plug-model on the condition that 
R, = 0. The possibility that Pe + 0 means that the 
longitudinal complete mixing occurs on the shell side. 
Generally, the shellside flow pattern lies between com- 
plete mixing and plug-flow, so that 0 < Pe < m. 

Therefore, one can describe the effect of shellside flow 
maldistributions by means of Pr. 

The uniform initial conditions take the following 
forms : 



I, (x. 0) = I,(.\, 0) = 0, r,,(.v,O) : l,,(.t-.Oj = 0 

(i= 1.2 . . . . . Nj. (IO) 

With regard to the dispersion model, the shellside inlet 
condition should appear as follows [8] : 

I dt, 
t,-Pr ;Is = f’,(z) at .u=O (11) 

which is different from that [2] in the plug-flow model. 
The additional shellside exit condition must be sup- 

plemented. According to the second law of thermo- 
dynamics, its form will be [8] 

The other N boundary and interface conditions cor- 
responding to the tubeside temperature profiles are 
listed in Table 1. They vary with the number of tube- 
side passes and flow arrangements. 

Functions,f’, (z) and f;(z) describe any possible inlet 

temperature changes on both sides of the exchanger. 
which may take place separately or simultaneously. 

THEORETICAL SOLUTION 

Equations (13) and (14) can be transformed into a 
system of first-order equations. This is accomplished 
by introducing 

F, =z. (17) 

In matrix notation this system appears in the form 

where T = (T,, , T,,, , Tz,,,, T,, 7,)’ and A is a 
matrix of (N+2) order, the elements of which are 
given as 

-cE,,R,s- U,e,, ,j = i 

I .i= N+l i< N,,j< ~+2 

Owing to its simplicity, the Laplace transform is 
used in determining the solution to the system con- 
sisting of (2N+2) differential equations. Using s as 1 ,j=N+2 

the Laplace parameter with respect to the dimen- 0 other j 
.j < N+2 

sionless time variable z, one can easily obtain the 

following transformed equations : a,+ 2, = 

Peul&,,a,, _ 
a,,+a,,+R,,s 

other ,j 

j ,< N 

(.i = N+ I) 

j= N+2 
dT,, u32,a I, 
dx = s’gnz,,+;;, + R,,s ~~~~ T, According to the similar procedure described in ref. 

[8], a general solution to the system (18) is derived as 

U2F7,‘X2, 

! 

Y+Z 
+ sign ~-. ~~ -tzE,,R,s- c!J~E~, 

x,,+~,+Rw,s 
Tz, T = c d,B; exp (i,~) (19) 

,= I 

(i= 1,2,...,N) (14) where i, (.j = 1,2. , N+ 2) are eigenvalues of matrix 

Table I. The boundary and interface conditions for t,,(.x, -_) 

Tubeside flow 
arrangement 

x = 0, 3 > 0 b = 1, z > 0 I II 

N t2, = tzr+ I = lz,., i I iI, = t a+ I = tz,,z t I ~ZY(O.~) = .fz(--1 l?,(O,Z) = f?(3) 
even i=2,4,...,N-2 i= 1.3,....N-I 

N i?, = l 2, / I = 12z.,+ I 12, = 12x+ I = t3.1+ I ~*.dl> 2) = .I?@) l*,(O,--) = /z(z) 
odd i=2,4,...,N-l i= 1,3,...,N-2 
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A and B, = (b,j, bzj,. , . , bN+Z,j)T are the cor- 
responding eigenvalues. It should be emphasized that 
the solution (19) may fail, if multiple eigenvalues 
occur. In such cases that not all eigenvalues are 
distinct, a form of the solution is suggested in ref. [8]. 
Ld, are (N+2) unknown coefficients which must be 
determined subject to the given boundary conditions. 
From equation (19) and the given boundary 
conditions, one can readily build a matrix equation 
which confines these coefficients 

WD=G (20) 

where D=(dt,dz ,..., dN+z)T and G=(O,O ,..., 
F2(s), F,(s))~, if the inlet boundary conditions on 
both sides are laid in the proper positions of the 
last two equations in equation (20). W is a (N+2) 
x (N+2) matrix whose elements depend on many 
factors such as the number of tubeside passes, the 
tubeside flow arrangement, the multiplicity of eigen- 
values aj and the forms of shellside inlet and exit 
boundary conditions. Therefore, the coefficient vector 
D is determined as 

D = W-‘G. (21) 

So far the temperature profiles in the Laplace 
image-domain have been found. The shellside and 
tubeside temperature distributions can be explicitly 
expressed, respectively 

N+2 

T, (~9 3) = 1 djbN+ i,j ew (kjx) 
j= 1 

iv+ 2 

(22) 

T2,(x,s) = c djbij exp (Sx) (i = 1,2,. . . , IV). 

j;; I 

(23) 

The temperature profiles T,? and T, have been already 
given by equations (15) and (I 6). Especially, the shell- 
side exit response T,, is determined from equation 

(22) 
N+2 

TI, = C djbN+ 1.1 exp (5) 
j=I 

(24) 

and the tubeside exit response Tze varies with the 
tubeside flow arrangement. For tubeside flow arrange- 
ment I 

N+2 

T2, = T2, = c d,l+ 
jxl 

(2.5) 

Otherwise, for tubeside flow a~angement II 

i, 

Iv+2 

C d,bNj even N 
TzC = TPN = j= I 

N+2 . (26) 
1 d,b, exp (a,) odd N 

j= L 

In all these equations, d,, B, and 5 may be functions 
of the Laplace parameter s. The inverse transform 
must be performed to obtain the final solution in the 
real time-domain. Obviously, it is impossible to finish 
this task analytically. A method of a numerical inverse 

Laplace transform called the Gaver-Stehfest [9] is 
appropriate for determining the transient responses 
to arbitrary inlet temperature changes in the time- 
domain. This numerical algorithm can be described 
by the following expressions 

Ki = (_ ])‘+“‘2 

where M is the number of series terms to be summed 
and it must be even. The word ‘min’ means that the 
number of summed terms takes the lower of i and 
M/2. By means of expression (27), one can obtain the 
transient temperature profiles of both fluids, the core 
wall and the shell wall 

In 7 rnl”(i .&,;2, In 2 
t,(x.z’=+ c K,T, x,tm” ( > (28) 

I= I 

where the subscriptj can take 1,2i, wi and s. 

APPLICATIONS AND DISCUSSIONS 

In order to expound the utility of the method 
developed in this paper and the influence of the ther- 
mal capacity of the shell as well as the difference 
between the dispersion and the plug-flow model. a 
number of examples are calculated for the condition 
where U, = U2 and R, = 1.0. These examples of the 
exit transient responses to arbitrary inlet temperature 
changes are examined for the shell and tube heat 
exchangers with different tubeside passes and flow 
arrangements, different distributions of @A) 1 as well 
as @A), among tubeside passes and different ratios 
of the thermal capacity of the shell wall to that of the 
core wall. 

Figure 2 shows the exit temperature responses to a 
shellside step inlet temperature change in a l-2 heat 
exchanger with tubeside flow arrangement I. Figure 
3 illustrates the supposition of exit responses to a 
tubeside step and a shellside exponential inlet change 
in a l-6 heat exchanger with flow arrangement II. As 
a measure to check whether the afore-derived for- 
mulae are correct, the overall energy balance between 
both fluids has been examined. The results have shown 
that a precise energy balance under the steady state 
for the step inlet temperature change exists. Further, 
the calculation has been also performed for the case 
where Pe -+ cc and the same results are obtained as 
those from the plug-flow model [2]. 

To investigate the influence of the thermal capacity 
of the shell wall and the effect of shellside mal- 
dist~butions, the following definitions are intro- 
duced : 

and a,,,, = 



1.0 

t2e 0.9 
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z 

(a) shellside fluid (a) shellside fluid 
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z 

(b) tub&de fluid 

FK. 2. Exit responses to a shellside step inlet temperature 
change of a heat exchanger with counterflow arrangement 
(R, = 0.8, R, = R, = 0.5, coef = 0.2, Pe = 4.0, f,(z) = 1, 

fi(z) = 0). (a) Shellside fluid and (b) tubeside fluid. 

where t,,2 and t,,2p are the dimensionless shellside and 
tubeside exit temperature responses without con- 
sidering the shell wall, t T,z is the corresponding results 
from the plug-flow model [2] and z,,?~ the ones cal- 
culated from the algorithm developed in this paper. 
Figures 4 and 5 illustrate the influence of the thermal 
capacity of the shell wall on the transient behaviour 
of heat exchangers, which depends upon the values of 
the thermal capacity and the heat transfer coefficient 
between the shell wall and shekide fluid as well as the 
lapse of time in the transient process. The results show 
that the thermaf capacity of the shell wall should 
not be neglected, if the ratio R, = CT/C, > 0.1 and 

0.8 

0.7 

0.6 

0.5 

1.0 

4.0 

I”“I”“l”“’ 
5.0 10.0 15.0 20.0 

z 

(b) tubeside fluid 

FIG. 3. Superposition of exit responses to a shellside expon- 
ential and a tubeside step inlet temperature change of a 1-6 
heat exchanger with tubeside flow arrangement 11 (E,, = 
F ,,4 = 0.2, E,: = e,1 =E,> =E,b - -0 15, El, = Ez4 = 0.2, 
82: = E>? = Ez5 = .?Z6 = 0.15, E,$ = EC1 = 0.2, eC2 = EL1 = ECS = 
e,* = 0.15, EWE = Ewq = 0.2, E,z = .qVX = 6,s = ewe = 0. IS, 
R, = 1.0. R,+ = 0.5, R, = 0.3, coef = 0.1, Pe = 6.0, J,(z) = 
exp (- tl, .jz(z) = 1). (a) Shellside fluid and (b) tubeside fluid. 

coef = US/U, > 0.1. This effect passes approximately 
into nothingness, if the dimensionless time z > 15. 

The examples plotted in Figs. 6 and 7 explain the 
effect of the shellside flow maldist~butions, Because of 
such maldistributions, the exit responses occur earlier 
compared with the results from the plug-flow model. 

The smaller the Pe, the greater the time of lead, which 
means that the shellside flow maldistributions accel- 
erate the shellside exit response. In fact, the smaller 
value of Pe corresponds to the stronger longitudinal 
mixing on the shell side. In such a case, the mal- 
distributions will result in a greater shellside and a 
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FIG. 4. Influence of the parameter U, on the exit responses 
to a shellside step inlet temperature change of a 14 heat 
exchanger with tubeside flow arrangement I (E, , = E, 2 = 
~,~=~,~=0.25, E*,=E~~=E~~=E~~=~.~~, EC,=.?,>= 
.sc3 = ed = 0.25, E,, = Ew2 = E,) = E,., = 0.25, R, = 0.8, 
R, = 0.6, R, = 0.4, NTU, = 1.5, Pe = 4.0, f,(z) = 1, 

f2(z) = 0). (a) Shellside fluid and (b) tubeside fluid. 

smaller tubeside response. In other words, the mal- 
distributions degrade the heat transfer process and a 
smaller temperature change through the apparatus 
follows. After the threshold of time, the effect of the 
maldistribution does not vary with time. This 
threshold value depends mainly on such parameters 
as Pe and NTU. 

response subject to the inlet temperature change which 
has oscillatory components. 

NON-UNIFORM INITIAL CONDITIONS 

Furthermore, it should be underlined that because 
of the limitation of the Gaver-Stehfest algorithm, the 
above method can be used for predicting the transient 
responses to such arbitrary inlet temperature changes 
that have no discontinuities or rapid oscillations. One 
should be careful of its application to the transient 

The above-mentioned algorithm is based on the 
uniform initial conditions (10). It will be of more 
practical applications if the preceding method can be 
extended to the cases of non-uniform initial 
conditions. In general, a new transient process may 
follow the steady state whose temperature profiles 
such asg, (x), g&x), g,,+(x) andg,(x) are the solutions 
to equations (6)-(9) as 7 + co. Therefore, the initial 
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FIG. 5. Influence of the thermal capacity of the shell wall on 
the exit responses to a shellside step inlet temperature change 
of a 14 heat exchanger with tubcside flow arrangement I 
(E,, = E,~ = E,~ = E,~ = 0.25, E2, = E2* = E2, = E2., = 0.25, 
E,, = sCZ = E,~ = E_, = 0.25, E,, = Ew2 = Ew3 = Ew4 = 0.25, R, 
= 0.8, R, = 0.6, NTU, = 1.5, coef = 0.3, Pe = 4.0, f,(z) 

= 1, f*(z) = 0). (a) Shellside fluid and (b) tubeside fluid. 



Pe== 50 20 2 

(a) shebide kid (a) shellside fluid 

(b) tube&de fluid 

FIG. 6. Comparison between the dispersion and plug-80~ 
model in a 1-2 heat exchanger with tubeside flow arrange- 
ment I (E,~ = E,? = 0.5, Ed, = EZZ = 0.5, cc, = E,~ = 0.5. 
e,, = zBz = 0.5, R, = 1.0, R, = 0.5, NTU, = 2.0, R, = 0. 
coef = 0, .f;(z) = I. f;(z) = 0). (a) Shellside Buid and (b) 

tubeside fluid. 

conditions pertinent to the new transient process are 
described as follows : 

f , (x, 0) = .4 I (x). t&. 0) = y&x), 

f2r (x, 0) = g2r (4, L, (4 f-9 = 9w (4 

(i= I,2 ,..., N). (30) 

Then, the temperature profiles of the new transient 
process can be given as follows : 

li tx* z, = if, fx) + dt, (& z, (31) 

where the subscript ,j can take 1, 2i, wi and s. As 
already pointed out, g,(x) are the known steady solu- 
tions to the previous transient process as z --+ CG and 

a 

‘O 0.6 

Pe=50 20 2 

@) h&&de fluid 

FIG. 7. Difference between the calculated exit responses from 
the dispersion and plug-flow model in a 1-2 heat exchanger 
with tubeside flow arrangement I [the same parameters as 

those in Fig. 6). 

one only needs to determine the transient parts 4,(x, z) 

in equation (31). The substitution of the trans- 
formation (31) into equations (6)-(9) reveals that 
+i(x, z) are the solutions of the following differential 
equations : 

-~~,ul.(BJ-u”,,)-L,,(#l-4~) =o (32) 
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Table 2. The boundary and interface conditions for ~$~$(n,z) 

Tubeside flow 
arrangement 

x=o,z>o x= l,z>O 

N 42, = 42r+ I = 42t,t+ I f#Jz, = hi+ 1 = hr+ 1 

even i=2,4,...,N-2 i= 1,3 ,...,N-I 

42, = 42t+ 1 = 42,.r+ I 
i= 1,3,...,N-2 

R,R,(I +RE2g - U,(4, -&) = 0. (35) 

From equation (30) one can obtain the uniform initial 

conditions subject to equations (32)-(35) with the 
substitution of equation (31) 

4,(&O) = M.&O) = 0, &(X,0) = eL(X,O) =0 

(i= I,2 ,..., N). (36) 

Similarly, the boundary conditions for the shellside 
temperature are derived 

and g = -g = 0 at x = 1. (37) 

The boundary and interface conditions for ~$z~(.x,z) 
are listed in Table 2. 

Obviously, this system of differential equations is 
similar to the one consisting of equations (6)-(9) as 
well as the shellside boundary conditions (1 l), (12) 
and the tubeside conditions listed in Table 1. There- 
fore, the afore-derived algorithm can be directly used 
to find the transient parts 4,(x, z) according to equa- 
tions (32)-(35) subject to the corresponding initial 
and boundary conditions without difficulty. The final 
temperature responses t,(x,z) to the new inlet tem- 
perature changes,f,,(z) andf,,(z) under the non-uni- 
form initial conditions can be easily obtained by 

means of the superposition (equation (31)). 

CONCLUSIONS 

On the basis of the dispersion model instead of the 
conventional plug-flow model, a method has been 

developed to predict the transient behaviour of multi- 
pass shell and tube heat exchangers, considering the 
shellside flow maldistributions. In addition to the 

thermal capacities of both fluids and the core wall, the 
thermal capacity of the shell wall has been included 
to derive the more universal formulae which are applic- 
able to the analysis of the transient behaviour subject 
to arbitrary inlet temperature changes. Such changes 
may take place on either side or simultaneously on 

both sides. 

I II 

4ZN(O3 z) = f*,(z) -gdO) ~,,(O~Z) = f;,(z)-572,(O) 

4ZN(1~--) = f&-SZN(1) 421(O,z) = .fz,(--) -sz1 UN 

The influence of the thermal capacity of the shell 
wall should not be neglected as usual, if the values of 

R, and coef lie in the ranges R, > 0.1 and coef > 0.1. 

The shellside flow maldistributions result in a quicker 
exit temperature response which cannot be explained 
with the plug-flow model. The P&let number Pe quan- 

titatively describes the effect of the shellside flow mal- 
distributions. The influence of the maldistributions on 
the transient behaviour does not vary with time, if the 
dimensionless time z exceeds a threshold value which 
depends upon such parameters as Pe and NTU, etc. 
In the case that Pe + co, the dispersion model 
approaches to the plug-flow model. By means of the 
principle of superposition, the method developed in 
this paper can be readily extended to cases of the non- 

uniform initial conditions. 
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ANALYSE DU COMPORTEMENT VARIABLE D’UN EC11ANC;EUR THERMIQUf: 
MULTIPASSES TUBES-CALANDRE AVI’C LF MODELE DE DlSPERSION 

Rismn~-Alin de prendrc cn complc I‘eil‘et dcs mauvaises rtpartitions du tluide c&c-calandre, on utilisc Ic 
modkle de dispersion pour prbdirc lc comportement variable soumis d des changements arbitraircs de 
tempt-rature d‘entrL:e dans lcs itchangeurs tubes-calandre. Le nombrc et la taille des passes cbtt-tube soni 
arbitrdires et deux arrangements possibles d’&coulement sont considCr&. En plus des capacites thcrmiques 
des Ruides et de la paroi intermCdiaire, on inclut la capacitC thermique de la calandre. La solution tinalc 
est ohtenue I l‘aide de la transformke num&rique inverse de Laplace. On discutc l’influence de la mauvaisc 

distributi(~n de l’icouiemcnt ciit&caidndre et de la capacitk thcrmique de la calandre. 

UNTERSUCHLJNG DES INSTATIONAREN VERHALTENS VON MEHRGANGIGEN 
ROHRBtiNDELW,&RMEOBERTRAGERN MIT DEM DlSPERSIONSMODELL 

Z~~m~nf~ung-Urn den EinauR der Fehlverteilung der Str6mung im A~~enraunl zu ber~cksichtigen, 
wird zur Vorausber~hnung des ins~tion~ren Verhaltens bei beliebigen Anderungen der Eintrittstem- 
peraturen das Dispersionsmodell angewendet. Die Anzahl und GrGBe der Rohrdurchggnge ist beliebig, 
und es werden beide maglichen Schaltungsarten betrachtet. Neben den WlrmekapazitHten beider Fluide 
und der Trennwand wird such die Kapazitat des Mantels im Model1 mit beriicksichtigt. Die end- 
giiltige Liisung erhtilt man durch eine numerische Laplace-Riicktransformation. Es wird der EintIuB 

der Fehlverteilung im AuBenraum und der Wlrmekapazit%t des Mantels diskutiert. 

AHAJIM3 IIEPEXOJjHbIX XAPAKTEPWCTMK MHOrOXOAOBbIX KOXYXO-TPYBHbIX 
TEI-IJIOOEMEHHWKOB C MCIIOJIb30BAHBEM AACI-IEPCHOfi MOAEJIH 

kHHOTS,&D,--&R yYeTa CTpyKTypbl TeYeHUII B KOxyXe MCIIOJrb3yeTCK @SCnepCHaR MOLlefib,IIO KOTOpOfi 

0npe~enazoTca nepexonHarexapaKTep~cTltKlInpunpoU3BonbHbtxA3MeHeHWIIxTeMnepaTypbIHa exoneB 

~HO~OXO~O~~~~ KO~yX~Tp~HblX Ten~oo6MenH~Kax. KOJEFE~BO fl pa3MepM nePeXOJ$OB B Tpy6ax 

SIBJISlIOTCX npO~3BOnbHbIM~,npK 3TOM paCCMaTpHBatoTC5I ABe B03MO?KHbieCTpyKT~bI TeWSiNR. Hapaay 
c TenJIOeMKOCTRMA pa6owx XGiAKOCTefi H CTeHKH UeHTpanbHOii Tpy6bI B MOfleJIti yreTbIsaeTcR Ten- 

J‘OeMKOCTb CTeHKH Komyxa. &LUeHlie nOlIyYeH0 MeTOiXOM %iCJIeHHOrO o6paTHoro npeo6pa3oHaHan 

JIannaca.MccneflyeTca BnEiaaaeCTpyKTypbITeYeHm BKo)KyxeBTellJIOeMKOCTRCTeHKEiKo~yxa. 


