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Abstract—To take the effect of shellside flow maldistributions into account, the dispersion model is used

for predicting the transient behaviour subject to arbitrary inlet temperature changes in multipass shell and

tube heat exchangers. The number and size of tubeside passes are arbitrary and two possible flow arrange-

ments are considered. Besides the thermal capacities of both fluids and the core wall, the thermal capacity

of the shell wall is included in the model. The final solution is obtained by means of the numerical inverse

Laplace transform. The influence of the shellside flow maldistribution and the thermal capacity of the shell
wall are discussed.

INTRODUCTION

MORE AND more research papers have contributed to
the analysis of the transient behaviour of shell and
tube heat exchangers, since the knowledge of dynamic
characteristics of such equipment is elementary infor-
mation for the design of control systems to achieve the
optimum design and operation. Correa and Marchetti
[1] applied the concept of cell structure to describing
the dynamic behaviour of multipass shell and tube
heat exchangers subject to a step inlet temperature
change, in which the influence of the thermal capacity
of the core wall was considered by introducing an
equivalent tubeside specific heat capacity. By means
of a numerical inverse Laplace transform, the authors
of this paper developed a method [2] for predicting
the transient responses to arbitrary inlet temperature
changes of multipass shell and tube heat exchangers
with an arbitrary number of tubeside passes and finite
thermal capacities of both the fluids and the core wall.
However, all these papers are based upon the ideal
plug-flow model. This conventional model may fail
if strong shellside flow maldistributions occur which
degrade the performance of equipment.

In fact, the shellside flow is never uniform because
of the complicated geometrical structures such as
baffles and windows. Mueller [3] classified the various
kinds of possible flow maldistributions in heat
exchangers. The effect of these maldistributions on
the thermal performance of the exchanger depends on
the intensity of each maldistribution. The dispersion
model is a very effective instrument to estimate the
effect of flow maldistributions on the performance
under the stationary condition [4, 5].

The dispersion model is an improved plug-flow
model, i.e. it is based on the main plug-flow with axial
diffusion or dispersion which may be both molecular

and macroscopic (laminar or turbulent). The syn-
onym of axial dispersion is back-mixing. In this model,
the apparent axial heat conduction term is introduced
into the energy balance and the effect of flow mal-
distribution is taken into account by this dispersion
term in the energy equation. It is convenient and
accessible to use this one-dimensional model with only
the axial space variable to handle such problems con-
cerning complicated flow patterns. Taylor [6] may be
the first to develop the dispersion model for mass
transfer in turbulent flow through a pipe.

In this paper, the application of the dispersion
model is extended to the transient analysis of multi-
pass shell and tube heat exchangers. In the light of
this model, the expressions for the transient responses
to arbitrary inlet temperature changes in exchangers
with N tubeside passes (designated as 1—N) are
derived. The thermal capacities of both fluids, the
core wall and the shell as well as two possible flow
arrangements are included. The fact that the thermal
properties and the number of transfer units (NTU)
vary piecewise from pass to pass is allowed for. The
final solutions are obtained by means of the numerical
inverse Laplace transform. According to the derived
expressions, the effect of the shellside flow mal-
distribution on the transient behaviour of such appar-
atus is analysed.

DERIVATION OF THE GOVERNING EQUATIONS

The previous analysis [7] has shown that the effect
of longitudinal heat conduction in the wall is generally
negligible, so that such longitudinal heat conduction
will be neglected in the following derivations. The
other necessary assumptions are listed as follows:

(1) the thermal flow rates W, and W, of both fluids
are constant;
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NOMENCLATURE
A heat transfer surfacc arca {m~] Greek symbols
C heat capacity [J K "] 0 temperature [K]
D dispersion coefficient or apparent heat 0, initial temperature in heat exchangers [K]
conductivity [Wm "' K ] {, reference temperature [K]
J1(2). f2(z)  inlct temperature changes A cigenvalue
Fi(s), F-(s)  transformed forms of f,{z) and T time [s]
£-(z) in the image domain 7, residence time of fluid in the heat

g/{x) steady parts defined in equation (30) exchanger [s}
h heat transfer coefficient [Wm K ] ¢,(x,z) transient parts defined in equation
{ distance from the entrance of shellside (31).
fluid {m]
L length of the heat exchanger [m]
M number of the summed scries terms in Subscripts
equation (27) i shellside fluid
N number of tubeside passes 2 tubeside fluid
NTU number of transfer units, dimensionless e exit
Pe Péclet number defined in equation (6) n new inlet temperature change
$ parameter of the Laplace transform q cross-section
I dimensionless temperature. s shell wall
t={0—0)/(0. -0, w core wall.
T transformed form of 7 in the Laplace
transform domain
w thermal flow rate [W K Y] Superscripts
X dimensionless coordinate, x = /L ‘ inlet
z dimensionless time. ” exit.
(2) the wall heat transfer resistance is negligible, a1,
compared with the convective heat transfer resistances st (hA) (1 —1) 4

on both sides;

(3) the effect of shellside flow maldistribution can
be described by introducing a dispersion term in the
shellside energy equation ; and

(4) no heat is transferred from the shell of the
exchanger to the environment.

The shell and tube heat exchangers with N tubeside
passes and two different tubeside flow arrangements
are illustrated in Fig. 1. The origin of the coordinate
system is always set at the location where the shellside
fluid enters the apparatus. According to the above-
mentioned presumptions, one is able to derive the
following differential equations:

A,D Eztl , 8{1 ot
ox ax T lor
N
- Z (ha) (1 — ) — (hA)(t ~2) =0 (1)
<1
2 .
EFN +C2z(37'r 4+ hA} ity —10) =0

(i=12....N) )

0t 0t 5;
(=1 Wy, 2

81“1[
CW[E’; _(kA)!i(El —twr)—(kA)ﬂ(IZf—:wz) =0

(i=12,....N) (3)

where the positive sign (+) and negative sign {—)
of (%) in equation (2) are valid for tubeside flow
arrangements 1 and II which are shown in Fig. 1,
respectively.

According to the first assumption, the thermal flow
rate W, does not change from pass to pass. But the
thermal capacity C,; of the tubeside fluid may be
different from pass to pass. The residence times 1,
and 1., of both fluids and some dimensionless par-
ameters are introduced

e e e
T = W| s T = W3 s Ty = H/zi
w, 1 (hd), (hA),
R=w=r Y= =
(hA)y; (hA) s (hA),
U, =~ 2! U, = —=, L=
1 ‘/V; > 28 ’/V2 Us W]
1 " U,U,R,
NTU, = |t e | = =- 2
‘ [(;;A). + (hA)z] W, U, U.R,
g 2 A Ui )y Uy
YA, U T ), U
. Clx‘ . Cwi
& = c,’ Ewi = C.
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(b) tubeside flow arrangement I

FiG. 1. Schematic representation of multipass shell and tube heat exchangers.

where
N N

(hA)l = Z (hA)ln (hA)z = z (hA)Zis

i=1 i=1
N
C,=5% Cy and C,

i=1

N
= Z Cwi'

i=1
Obviously, there are the following relationships :

N N N
Zslizla 282i=15 Zag:l,
i=1 i=1 i=1

and

V=

Ewi = 1 Troi = &6 Tr2- (5)

The other dimensionless parameters are defined as

2 C R 1
Rr =L’ Rcl 2“1—: I = >
Tn C2 Rr Rc2
R o Cw R _ Cwi
w C|+C2, Wi_Cl‘l"Cz’
Cs Uli
R, =— P =
s Cwﬂ Ay 1+Rc2!
U sign = +-1)
Ay = 7 v, SIgN = T{(— .
"TRA+RYE

Introducing the dimensionless time variable z = 1/
1,1, One can rewrite equations (1)—(4) as follows:

1 8%, o, ot ¥

F;W“a_‘gz‘_igl Uity =)
_Us(tl —_ts) =0 (6)
0 4o R Ly (¢ =0 (7
sign—== e R~ + Uniltn = 1) = @)
Rwi‘a‘;ﬁ—ali(tl—twi)—aZI(tli_twi) =0 (8)

0t

Rst(l+R02)E_Us(tl_ts) =0 (9)

where the Péclet number Pe = W L/DA,. Pe appears
only in the differential equation for describing the
shellside temperature. If Pe — oo, equation (6)
approaches to the same as that [2] derived from the
conventional plug-model on the condition that
R, = 0. The possibility that Pe - 0 means that the
longitudinal complete mixing occurs on the shell side.
Generally, the shellside flow pattern lies between com-
plete mixing and plug-flow, so that 0 < Pe < co.
Therefore, one can describe the effect of shellside flow
maldistributions by means of Pe.

The uniform initial conditions take the following
forms:
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H(x0) =1, 0) =0, 15,00 =1,,(x,0)=0

(10)

With regard to the dispersion model, the shellside inlet
condition should appear as follows [8] :

x=0 (11
which is different from that [2] in the plug-flow model.
The additional shellside exit condition must be sup-

plemented. According to the second law of thermo-
dynamics, its form will be [8]

Oty

= x = 1.
cxX

=0 at (12)
The other N boundary and interface conditions cor-
responding to the tubeside temperature profiles are
listed in Table 1. They vary with the number of tube-
side passes and flow arrangements.

Functions /;(z) and f3(z) describe any possible inlet
temperature changes on both sides of the exchanger.,
which may take place separately or simultaneously.

THEORETICAL SOLUTION

Owing to its simplicity, the Laplace transform is
used in determining the solution to the system con-
sisting of (2N+2) differential equations. Using s as
the Laplace parameter with respect to the dimen-
sionless time variable z, one can easily obtain the
following transformed equations:

14’7, dT, U i Use,ay,
Pe d.\’z dx =\ ' ,r|a|l+a7l+RWP§
+U us T
‘T RR(+R)+U)
N U g0
— Ty (13
,Z,OCI,"‘“’,"FRM (13
dTZi va,a“

i

dx £n 9(|,+OCZ,+R“,A

+ U7hx7, _u T

Sl n 262 2

& 4+ 00+ RS —eaR ?
(i=12,....N) (14)
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T p oy Ty - N
wi 7|,+°‘“+Rm (i=1.2....N)
(J.\'TI
Rst(] + Rc2)s+ I-/ys

(15)

(16)

Equations (13) and (14) can be transformed into a
system of first-order equations. This is accomplished
by introducing

7 =40 17
= (7
In matrix notation this system appears in the form

dT
dx

where T= (T, Tas,....Ton, T, 7)) and A is a
matrix of (N+2) order, the elements of which are

= AT (18)

given as
U282,(X2,
S - -U =1
lg <O(|,+a7,+RWI u 282, / 4
a;= < g J2u%
a11+171+RwiS
j=N+1 i< N,j< N+2
0 the
L other j
1 j=N+2 N
= P < 2
W+10=30 other; 7S +
Ayya; =
- P£U|8 %25 < N
fxl/‘f‘az,"’R“/ J&!
i Uieyoy;
Pey s+ U I
€<b+ I ,Z,(X],+(Xw,+RW,S
U? ’
Uy i e = N+1
U RR I+ Ra)s T U) (7=AN+1
\Pe j=N+2

According to the similar procedure described in ref.
[8], a general solution to the system (18) is derived as

N+ 2

T=1Y 4

j=1

B; exp (4;x) (19)

where 4;(j = 1,2,..., N+2) are eigenvalues of matrix

Table |. The boundary and interface conditions for tz,(x, z)

Tubesnde flow

arrangement
x=0,z20 x=1,z2 1 1
N 1y = Lo | = Loy [y =l = D40 tax(0,2) = f5(2) 151(0,2) = f5(2)
even i=2,4,..., N-2 i=1,3,....N
N Ly =y 1 = Loy Dy = gy = Loijy tn(1,2) = f2(2) 1,,(0,2) = f3(2)
i=24.. ., N-1 i=1,3...,N=-2
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A and B,={(b,;,by,...,by,2;)7 are the cor-
responding eigenvalues. It should be emphasized that
the solution (19) may fail, if multiple eigenvalues
occur. In such cases that not all eigenvalues are
distinct, a form of the solution is suggested in ref. [8].
d; are (N+2) unknown coefficients which must be
determined subject to the given boundary conditions.
From equation (19) and the given boundary
conditions, one can readily build a matrix equation
which confines these coeflicients

WD=¢G (20)

where D= (d,,d,,...,dy,.,)" and G=(0,0,...,
Fy(s), Fi(s))", if the inlet boundary conditions on
both sides are laid in the proper positions of the
last two equations in equation (20). W is a (N+2)
x (N+2) matrix whose elements depend on many
factors such as the number of tubeside passes, the
tubeside flow arrangement, the multiplicity of eigen-
values 4; and the forms of shellside inlet and exit
boundary conditions. Therefore, the coeflicient vector
D is determined as

D=W"!G. 2H

So far the temperature profiles in the Laplace
image-domain have been found. The shellside and
tubeside temperature distributions can be explicitly
expressed, respectively

N+ 2
1 dibyy . exp (4;%)

T(x,5) = ‘ (22)

7
N+2

Ty(x,8) = dibexp(4;x) (i=1,2,...,N).
= |

(23)

The temperature profiles T,; and T, have been already
given by equations (15) and (16). Especially, the shell-
side exit response T is determined from equatirn
(22)

N+2

T\ = Z diby, 1 exp(4))
=1

J

(24

and the tubeside exit response T, varies with the
tubeside flow arrangement. For tubeside flow arrange-
ment [

N+2
Toe =T, = Z d;b;. 25
j=1
Otherwise, for tubeside flow arrangement 11
N+ 2
Y dby, even N
Ty =Ty = ,’vjlz (26)

Y dibyjexp(d) odd N

=1
In all these equations, d;, B; and 4; may be functions
of the Laplace parameter s. The inverse transform
must be performed to obtain the final solution in the
real time-domain. Obviously, it is impossible to finish
this task analytically. A method of a numerical inverse
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Laplace transform called the Gaver—Stehfest [9] is
appropriate for determining the transient responses
to arbitrary inlet temperature changes in the time-
domain. This numerical algorithm can be described
by the following expressions

n2 X In2
f&=X K‘F(7’)
Ki — (_1)i+M/2
minti, M/ 2) KM K)
y (2K) @7

k:gm (M2—-K}MKHK—DIi— KN2K=-i}!

where M is the number of series terms to be summed
and it must be even. The word ‘min’ means that the
number of summed terms takes the lower of i and
M /2. By means of expression (27), one can obtain the
transient temperature profiles of both fluids, the core
wall and the shell wall

] zmin(LM,‘Z) l 2
B ="y K,T,(x,%i) (28)

“ i=1

where the subscript j can take 1, 2i, wi and s.

APPLICATIONS AND DISCUSSIONS

In order to expound the utility of the method
developed in this paper and the influence of the ther-
mal capacity of the shell as well as the difference
between the dispersion and the plug-flow model. a
number of examples are calculated for the condition
where U, = U, and R, = 1.0. These examples of the
exit transient responses to arbitrary inlet temperature
changes are examined for the shell and tube heat
exchangers with different tubeside passes and flow
arrangements, different distributions of (24), as well
as (hA4), among tubeside passes and different ratios
of the thermal capacity of the shell wall to that of the
core wall.

Figure 2 shows the exit temperature responses to a
shellside step inlet temperature change in a 1-2 heat
exchanger with tubeside flow arrangement 1. Figure
3 illustrates the superposition of exit responses to a
tubeside step and a shellside exponential inlet change
in a 1-6 heat exchanger with flow arrangement II. As
a measure to check whether the afore-derived for-
mulae are correct, the overall energy balance between
both fluids has been examined. The results have shown
that a precise energy balance under the steady state
for the step inlet temperature change exists. Further,
the calculation has been also performed for the case
where Pe — oo and the same results are obtained as
those from the plug-flow model [2].

To investigate the influence of the thermal capacity
of the shell wall and the effect of shellside mal-
distributions, the following definitions are intro-
duced ;

T tip—1% 29)

and 8, =

1,2p
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1.0

NTU;=0.1

t
te g9

0.8-

0.7+

0.8-

0.5+

0.4~

0.3+

0.2-

0.1+

0.0 Ty
0.0 5.0

(a) sheliside fluid

1.0
2e g g

0.8-

(b) tubeside fluid

F16. 2. Exit responses to a shellside step inlet temperature

change of a heat exchanger with counterflow arrangement

(R, = 0.8, R, = R,=0.5, coef =0.2, Pe =4.0, fi(z) =1,
f2(2) = 0). (a) Shellside fluid and (b) tubeside fluid.

where 1, ; and t, »p arc the dimensionless shellside and
tubeside exit temperature responses without con-
sidering the shell wall, £¥ , is the corresponding results
from the plug-flow model [2] and ¢, . the ones cal-
culated from the algorithm developed in this paper.
Figures 4 and 5 illustrate the influence of the thermal
capacity of the shell wall on the transient behaviour
of heat exchangers, which depends upon the values of
the thermal capacity and the heat transfer coefficient
between the shell wall and shellside fluid as well as the
lapse of time in the transient process. The results show
that the thermal capacity of the shell wall should
not be neglected, if the ratio R, = C,/C, > 0.1 and

W. ROETZFL and Y. XUAN

1.0
t
1e0‘9_
0.8-
0.7-
0.6- NTU;=4.0
.5-
o 1.0
0.4
0.5
0.3-
0.3
0.2-
0.1 0.1
0. 03y
0.0 5.0 10.0 15.0 20.0
z
(a) shellside fluid
1.0
NTU;=0.1
2e 0,9 !
0.8 0.3
0.7- 0.5
0.6- 1.0
0.5- 40
0.4-
0.3-
0.2-
0.1-
0.0t T
0.0 5.0 10.0 15.0 20.0
F4
(b) tubeside fluid

FiG. 3. Superposition of exit responses to a shellside expon-
ential and a tubeside step inlet temperature change of a 1-6
heat exchanger with tubeside flow arrangement 11 (¢, =
e1a=02, sp=en=g;5=6,=015 & =¢6,=02
32 = 83 = 825 = £24 = 015, 8y = 8y = 0.2, 8y = 83 = &5 =
e = 015, &, = e =02, &40 =8y = bys = &y = 0.15,
R =10, R, =05 R =03, coef =01, Pe =60, f,{z) =
exp {1}, f2(z) = 1). (a) Shellside fluid and (b} tubeside fluid.

coef = U, /U, > 0.1. This effect passes approximately
into nothingness, if the dimensionless time z > 15.
The examples plotted in Figs. 6 and 7 explain the
effect of the shellside flow maldistributions. Because of
such maldistributions, the exit responses occur earlier
compared with the results from the plug-flow model.
The smaller the Pe, the greater the time of lead, which
means that the shellside low maldistributions accel-
erate the shellside exit response. In fact, the smaller
value of Pe corresponds to the stronger longitudinal
mixing on the shell side. In such a case, the mal-
distributions will result in a greater sheliside and a
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coef=U, /U, =1.0

0.6 0.8

0.5
0.5
0.4

0.3

0.3
0.2
0.1
0.0 ——r—r——
0.0 5.0 10.0 15.0 20.0
z
() shellside fluid
0.20
a coef=U, /U, =1.0
2)
0.8
0.15
0.5
0.3
0.10
0.05
0.0 TP
0.0 5.0 10.0 15.0 20.0
z
(b) tubeside fluid

F1G. 4. Influence of the parameter U, on the exit responses
to a shellside step inlet temperature change of a 1-4 heat
exchanger with tubeside flow arrangement I (&, =¢,, =
£3=814=025, ey =g =63=£,4=025 & =6p=
83 = Ea = 0.25, £y = 842 = &y3 = 6,4 =025, R, =08,
R,=06, R =04, NTU =15 Pe=40, fi(z)=1.
f>(z) = 0). (a) Shellside fluid and (b) tubeside fluid.

smaller tubeside response. In other words, the mal-
distributions degrade the heat transfer process and a
smaller temperature change through the apparatus
follows. After the threshold of time, the effect of the
maldistribution does not vary with time. This
threshold value depends mainly on such parameters
as Pe and NTU.

Furthermore, it should be underlined that because
of the limitation of the Gaver-Stehfest algorithm, the
above method can be used for predicting the transient
responses to such arbitrary inlet temperature changes
that have no discontinuities or rapid oscillations. One
should be careful of its application to the transient
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r4
(b) tubeside fluid

FiG. 5. Influence of the thermal capacity of the shell wall on
the exit responses to a shellside step inlet temperature change
of a 14 heat exchanger with tubeside flow arrangement 1
En=¢e2=63=86,=025 &) =&3==8;=84=025
Bl = € = 63 = € = 0.25, &4 = €42 = Ey3 = £,4 = 0.25, R,
=08, R, =06, NTU, = 1.5, coef = 0.3, Pe =4.0, f(2)
=1, f,(2) = 0). (a) Shellside fluid and (b) tubeside fluid.

response subject to the inlet temperature change which
has oscillatory components.

NON-UNIFORM INITIAL CONDITIONS

The above-mentioned algorithm is based on the
uniform initial conditions (10). It will be of more
practical applications if the preceding method can be
extended to the cases of non-uniform initial
conditions. In general, a new transient process may
follow the steady state whose temperature profiles
such as g, (x), g2:(x), gw:(x) and g,(x) are the solutions
to equations (6)—(9) as T — . Therefore, the initial
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t j -- plug—flow model
‘e I — dispersion model
0.5
]
0.43
0.33
0.2
0.13
0.0t
0.0 5.0 10.0 15.0 20.0
z
{a) shellside fluid
0.6
tZe § """"""""""""""""" =
0.5
o.4§
Pe=co 50 20 2
0.3
E
W E
E
3]
0.1
3] — dispersion model
4 -~ plug—flow model
0.0Frr T T T T T
0.0 5.0 10.0 15.0 20.0
z
(b) tubeside fluid

F16. 6. Comparison between the dispersion and plug-fiow

model in a 1-2 heat exchanger with tubeside flow arrange-

ment I (&, =&,,=035, &) =¢8:;,=0.735, g, =¢,=0.5,

g =&a =05, R, =10, R, =05 NTU, =20, R, =0,

coef =0, fi{(z) = 1, f2(z) = 0). (&) Shellside fluid and (b}
tubeside fluid.

conditions pertinent to the new transient process are
described as follows :

16,0 = g:1(x),  4(x,0) = g,(x),
2 ()' 0) g2 (x) Iwi (X, 0) = YGwi (x)
(i=1,2..,N). (30)

Then, the temperature profiles of the new transient
process can be given as follows :

=g;,(x)+¢,(x,2) (31

where the subscript j can take 1, 2i, wi and 5. As
already pointed out, g,(x) are the known steady solu-
tions to the previous transient process as t - oo and

{,’(X, Z)
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F1G. 7. Difference between the calculated exit responses from

the dispersion and plug-flow model in a 1-2 heat exchanger

with tubeside flow arrangement 1 (the same parameters as
those in Fig. 6).

one only needs to determine the transient parts ¢,{x, z)
in equation (31). The substitution of the trans-
formation (31) into equations (6)-(9) reveals that
¢ {x, z) are the solutions of the following differential
equations:

1 UZ¢'I 6‘751 q(ﬁl
Pe ox’ ox oz
- Z Ui($i =)= U1 =) =0 (32)
Sign‘~g‘5“‘zi+8¢,R gkﬁr‘}-{jb(q&h ¢wi)=0 (33)
a wi
B =) o~ b = 0 ()
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Table 2. The boundary and interface conditions for ¢,,(x, z)

x=0,z20 x=1,z20

Tubeside flow
arrangement

I I

N ¢2i:¢2i+1 =¢zi.f+1
even i=2,4,...,.N=-2

N ¢Zi:¢2[+l =¢zu+|
odd i=2.4,..., N—1

o= ¢21+1 = ¢2i,i+|
i=13,...,N-1

d’z,: ¢2i+l = ¢’2u+|
i=13,...,N=-2

¢2n(0,2) = £5,(2) —g2n(0)

¢an(1,2) = f2,(2) —gan(D)

$21(0,2) = f3,(2)—g2:(0)

$21(0,2) = f5,(z) —g2,(0)

Rst(l + RC2)

—U(¢1—d,) =0.

0,
ke (35)

From equation (30) one can obtain the uniform initial
conditions subject to equations (32)-(35) with the
substitution of equation (31)

¢1(Xa 0) = ¢s(xs 0) = 0’ ¢2i(—x’ 0) = d)wi(x’ 0) =0
(i=12,...,N). (36)

Similarly, the boundary conditions for the shellside
temperature are derived

1 a(bl_ 1 dg,
¢1—Pefax—fm(ﬂ)—91+*’5;'a; at x=0
o, dg,
and ax_—a_o at x=1. 37)

The boundary and interface conditions for ¢,(x, z)
are listed in Table 2.

Obviously, this system of differential equations is
similar to the one consisting of equations (6)—(9) as
well as the shellside boundary conditions (11), (12)
and the tubeside conditions listed in Table 1. There-
fore, the afore-derived algorithm can be directly used
to find the transient parts ¢,(x, z) according to equa-
tions (32)-(35) subject to the corresponding initial
and boundary conditions without difficulty. The final
temperature responses f,(x,z) to the new inlet tem-
perature changes f),(z) and f,,(z) under the non-uni-
form initial conditions can be easily obtained by
means of the superposition (equation (31)).

CONCLUSIONS

On the basis of the dispersion model instead of the
conventional plug-flow model, a method has been
developed to predict the transient behaviour of multi-
pass shell and tube heat exchangers, considering the
shellside flow maldistributions. In addition to the
thermal capacities of both fluids and the core wall, the
thermal capacity of the shell wall has been included
to derive the more universal formulae which are applic-
able to the analysis of the transient behaviour subject
to arbitrary inlet temperature changes. Such changes
may take place on either side or simultaneously on
both sides.

The influence of the thermal capacity of the shell
wall should not be neglected as usual, if the values of
R, and coef lie in the ranges R, > 0.1 and coef > 0.1.
The shellside flow maldistributions result in a quicker
exit temperature response which cannot be explained
with the plug-flow model. The Péclet number Pe quan-
titatively describes the effect of the shellside flow mal-
distributions. The influence of the maldistributions on
the transient behaviour does not vary with time, if the
dimensionless time z exceeds a threshold value which
depends upon such parameters as Pe and NTU, etc.
In the case that Pe— oo, the dispersion model
approaches to the plug-flow model. By means of the
principle of superposition, the method developed in
this paper can be readily extended to cases of the non-
uniform initial conditions.
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ANALYSE DU COMPORTEMENT VARIABLE D'UN ECHANGEUR THERMIQUE
MULTIPASSES TUBES-CALANDRE AVEC LE MODELE DE DISPERSION

Résume-—Afin de prendre en compie effet des mauvaises répartitions du fluide cété-calandre, on utilise ke
modéle de dispersion pour prédire e comportement variable soumis 4 des changements arbitraires de
température d’entrée dans les échangeurs tubes-calandre. Le nombre et la taille des passes c6té-tube sont
arbitraires et deux arrangements possibles d’écoulement sont considérés. En plus des capacités thermiques
des fluides et de la paroi intermédiaire, on inclut la capacité thermique de la calandre. La solution finale
est obtenue & ['aide de la transformée numérique inverse de Laplace. On discute Uinfluence de la mauvaise
distribution de P'écoulement coté-calandre et de Ja capacité thermique de la calandre.

UNTERSUCHUNG DES INSTATIONAREN VERHALTENS VON MEHRGANGIGEN
ROHRBUNDELWARMEUBERTRAGERN MIT DEM DISPERSIONSMODELL

Zusammenfassung—Um den Einflul der Fehlverteilung der Strémung im AuBenraum zu beriicksichtigen,

wird zur Vorausberechnung des instationdiren Verhaltens bei beliebigen Anderungen der Eintrittstem-

peraturen das Dispersionsmodell angewendet. Die Anzahl und Grofle der Rohrdurchginge ist beliebig,

und es werden beide moglichen Schaltungsarten betrachtet. Neben den Wiarmekapazitaten beider Fluide

und der Trennwand wird auch die Kapazitit des Mantels im Modell mit bericksichtigt. Die end-

giltige Losung erhdlt man durch eine numerische Laplace-Riicktransformation. Es wird der EinfluB
der Fehlverteilung im AuBenraum und der Wirmekapazitit des Mantels diskutiert.

AHAJIHU3 NEPEXOAHBIX XAPAKTEPUCTUK MHOIOXOAOBbIX KOXYXO-TPYBHbIX
TEINJIOOEMEHHUKOB C UCIIOJIB30BAHHUEM JUCHEPCHOW MOJEJHA

Amtoramma—/is y4eTa CTPYKTYPbl TEUESHHS B KOXYXE HCIOIb3yETC AMCIIEPCHAN MOJEND, 10 KOTOpolt
OTPENeNsIOTCH NEPEXONHbIE XaPAKTEPHCTHKH NIPH TPOH3BOJBHbIX H3MCHEHHSX TEMIEPATYDH HA BXOAE B
MHOTOXOZIOBBIX KOXYXOo-TpyOHbIX TemnooOmennukax. Konudectso u pasMmepsl mepexomos B Tpydax
ABJAAIOTCH IPON3BOJILHBIMHE, TIPH 3TOM PacCMATPHBAKOTCA ABC BO3MOXHMIC CTPYKTYpHI Teuenus. Hapsaay
C TEIUTOEMKOCTAMH paGOYHX XKHIOKOCTEH H CTEHKHM LEHTpadbHOK TPYOBl B MOZENH y4MTHIBAETCA Tel-
JIOEMKOCTb CTEHKH KOXyxa. PelueHue MOJYYeHO METOAOM dYHCAeHHoro ofpaTHoro npeoGpa3oBaHns
Jlannaca. MccienyeTes BIMANEE CTPYKTYDBI TEYEHHS B KOXKYXE U TEIJIOEMKOCTH CTEHKH KOXKYXa.



